
Code Smells
Surface-level indications of potential underlying problems

Mysterious Name
A name that does not obviously describe the structure

String type = “default”;

int weight = 50;

Long Method
Any method longer than 10 lines

Duplicate Code
Literally the exact same characters, similar constructs with minor
internal variation, or intra-line expressions duplicated across lines

Switch Statement
The keyword switch or if/else if/else blocks

Complex Conditional
Multiple boolean expressions or nested blocks

Feature Envy
Reading and modifying another class’s data while not using its own

!// GildedRose class is envious of Item class

private void increaseQualityWhenBelow50(Item item) {

 if (item.quality < 50) { item.quality"++; }

}

Data Class
A class with only fields, getters & setters, or a Java bean

public class Item {

 public String name;

 public int sellIn;

 public int quality;

}

Refactors
Structural transformations which preserve behavior

Replace Type Code with Subclass
1. If no existing class, wrap type code or string value in a class
2. Create a getter method for the type code
3. Create a subclass for the type
4. Override the getter and return a hard coded type code
5. Repeat steps 2-4 until all type codes have a subclass
6. Remove type code field from the base class

Replace Conditional with Polymorphism
1. Ensure necessary inheritance structure, possibly by using Replace Type Code

with Subclass
2. Pick a subclass, override the method containing the conditional.
3. Copy and paste entire method body from base class
4. In the subclass, replace conditionals related to that type with true, replace all

other type code conditionals with false
5. Simply remaining boolean expressions and unwrap if statements
6. In the base class, replace conditionals related to that type with false
7. Simply remaining boolean expressions and unwrap if statements
8. Repeat steps 2-7 until all conditionals are replaced with overridden methods

Replace Nested Conditional with Guard Clause
1. Extract check and create new if at the top of the method
2. Invert condition
3. Return early or throw exception
4. Reduce nesting of original block

Workflow

Mapping of Code Smells to Refactors

Java Refactoring Cheat Sheet

© Steve Turley - www.turleylabs.com

Refactor IntelliJ Shortcut
Extract Variable Ctrl + Alt + V
Extract Method Ctrl + Alt + M
Inline Variable / Method Ctrl + Alt + N
Extract Parameter Ctrl + Alt + P
Move Instance Method F6
Rename Method / Variable / Class Shift + F6

The disciplined application of a series of small, behavior-preserving transformations

References:
Fowler, Martin. Refactoring: Improving the Design of Existing Code
Kerievsky, Joshua. Refactoring to Patterns

FIND A CODE SMELL

APPLY A REFACTOR

RUN TESTS

Code Smell Refactor (Transformation)
Mysterious Name Rename Method / Variable / Class
Long Method
Dup

Extract Method

Duplicate Code Extract Method
Extract Variable

Feature Envy Move Instance Method
Data Class Move Instance Method

Switch Statement Replace Type Code with Subclass
Replace Conditional with Polymorphism

Complex Conditional
Replace Nested Conditional with Guard
Clause

http://www.turleylabs.com

